Plants in Microgravity: Molecular and Technological Perspectives (2024)

1. Ferl R., Wheeler R., Levine H.G., Paul A.-L. Plants in space. Curr. Opin. Plant Biol. 2002;5:258–263. doi:10.1016/S1369-5266(02)00254-6. [PubMed] [CrossRef] [Google Scholar]

2. Fu Y., Li L., Xie B., Dong C., Wang M., Jia B., Shao L., Dong Y., Deng S., Liu H., et al. How to establish a bioregenerativelLife support system for long-term crewed missions to the moon or mars. Astrobiology. 2016;16:925–936. doi:10.1089/ast.2016.1477. [PubMed] [CrossRef] [Google Scholar]

3. Medina F.J., Manzano A., Villacampa A., Ciska M., Herranz R. Understanding reduced gravity effects on early plant development before attempting life-support farming in the moon and mars. Front. Astron. Space Sci. 2021;8:729154. doi:10.3389/fspas.2021.729154. [CrossRef] [Google Scholar]

4. Wheeler R.M. Plants for human life support in space: From Myers to Mars. Gravit. Space Biol. 2010;23:25. [Google Scholar]

5. Evans M.L. Gravitropism: Interaction of sensitivity modulation and effector redistribution. Plant Physiol. 1991;95:1–5. doi:10.1104/pp.95.1.1. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

6. Darwin C. The Power of Movement in Plants. John Murray Publishers; London, UK: 1880. [Google Scholar]

7. Su S.-H., Gibbs N.M., Jancewicz A.L., Masson P.H. Molecular mechanisms of root gravitropism. Curr. Biol. 2017;27:R964–R972. doi:10.1016/j.cub.2017.07.015. [PubMed] [CrossRef] [Google Scholar]

8. Chebli Y., Geitmann A. Gravity Research on Plants: Use of single-cell experimental models. Front. Plant Sci. 2011;28:56. doi:10.3389/fpls.2011.00056. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

9. Kiss J.Z., Wolverton C., Wyatt S.E., Hasenstein K.H., van Loon J.J.W.A. Comparison of microgravity analogs to spaceflight in studies of plant growth and development. Front. Plant Sci. 2019;10:1577. doi:10.3389/fpls.2019.01577. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

10. Simmons C., Migliaccio F., Masson P., Caspar T., Soll D. A novel root gravitropism mutant of Arabidopsis thaliana exhibiting altered auxin Physiology. Physiol. Plant. 1995;93:790–798. doi:10.1111/j.1399-3054.1995.tb05133.x. [PubMed] [CrossRef] [Google Scholar]

11. Sato E.M., Hijazi H., Bennett M.J., Vissenberg K., Swarup R. New insights into root gravitropic signalling. J. Exp. Bot. 2015;66:2155–2165. doi:10.1093/jxb/eru515. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

12. Kiss J.Z., Millar K.D.L., Edelmann R.E. Phototropism of Arabidopsis thaliana in microgravity and fractional gravity on the International Space Station. Planta. 2012;236:635–645. doi:10.1007/s00425-012-1633-y. [PubMed] [CrossRef] [Google Scholar]

13. Chen R., Rosen E., Masson P.H. Gravitropism in higher plants. Plant Physiol. 1999;120:343–350. doi:10.1104/pp.120.2.343. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

14. Estelle M. Plant Tropisms: The Ins and outs of auxin. Curr. Biol. 1996;6:1589–1591. doi:10.1016/S0960-9822(02)70780-X. [PubMed] [CrossRef] [Google Scholar]

15. Digby J., Firn R.D. The gravitropic set-point angle (GSA): The identification of an important developmentally controlled variable governing plant architecture. Plant Cell Environ. 1995;18:1434–1440. doi:10.1111/j.1365-3040.1995.tb00205.x. [PubMed] [CrossRef] [Google Scholar]

16. Roychoudhry S., Kieffer M., Del Bianco M., Liao C.Y., Weijers D., Kepinski S. The developmental and environmental regulation of gravitropic setpoint angle in Arabidopsis and bean. Sci. Rep. 2017;7:42664. doi:10.1038/srep42664. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

17. Sack F.D. Plant gravity sensing. Intern. Rev. Cytol. 1991;127:193–252. doi:10.1016/s0074-769660695-6. [PubMed] [CrossRef] [Google Scholar]

18. Sack F.D. Plastids and gravitropic sensing. Planta. 1997;203:S63–S68. doi:10.1007/PL00008116. [PubMed] [CrossRef] [Google Scholar]

19. Kiss J.Z. Mechanisms of the early phases of plant gravitropism. Crit. Rev. Plant Sci. 2000;19:551–573. doi:10.1080/07352680091139295. [PubMed] [CrossRef] [Google Scholar]

20. Wayne R., Staves M.P. A down to earth model of gravisensing or Newton’s law of gravitation from the apple’s perspective. Physiol. Plant. 1996;98:917–921. doi:10.1111/j.1399-3054.1996.tb06703.x. [PubMed] [CrossRef] [Google Scholar]

21. Casper T., Pickard B.G. Gravitropism in a starchless mutant of Arabidopsis: Implications for the starch-statolith theory of gravity sensing. Planta. 1989;177:185–197. doi:10.1007/BF00392807. [PubMed] [CrossRef] [Google Scholar]

22. Moulia B., Douady S., Hamant O. Fluctuations shape plants through proprioception. Science. 2021;372:eabc6868. doi:10.1126/science.abc6868. [PubMed] [CrossRef] [Google Scholar]

23. Cholodny N. Wuchshormone und tropismen bei den pflanzen. Biol. Zent. 1927;47:604–626. [Google Scholar]

24. Went F. On growth-accelerating susbtances in the coleoptile of Avena sativa. Proc. K. Ned. Acad. Wet. 1926;30:10–19. [Google Scholar]

25. Young L.M., Evans M.L., Hertel R. Correlations between gravitropic curvature and auxin movement across gravistimulated roots of Zea Mays. Plant Physiol. 1990;92:792–796. doi:10.1104/pp.92.3.792. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

26. Rashotte A.M., Brady S.R., Reed R.C., Ante S.J., Muday G.K. Basipetal auxin transport is required for gravitropism in roots of Arabidopsis. Plant Physiol. 2000;122:481–490. doi:10.1104/pp.122.2.481. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

27. Brown D.E., Rashotte A.M., Murphy A.S., Normanly J., Tague B.W., Peer W.A., Taiz L., Muday G.K. Flavonoids act as negative regulators of auxin transport in vivo in Arabidopsis. Plant Physiol. 2001;126:524–535. doi:10.1104/pp.126.2.524. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

28. Buer C.S., Muday G.K. The Transparent testa4 mutation prevents flavonoid synthesis and alters auxin transport and the response of Arabidopsis roots to gravity and light. Plant Cell. 2004;16:1191–1205. doi:10.1105/tpc.020313. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

29. Lewis D.R., Ramirez M.V., Miller N.D., Vallabhaneni P., Ray W.K., Helm R.F., Winkel B.S.J., Muday G.K. Auxin and ethylene induce flavonol accumulation through distinct transcriptional networks. Plant Physiol. 2011;156:144–164. doi:10.1104/pp.111.172502. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

30. Blakeslee J.J., Peer W.A., Murphy A.S. Auxin transport. Curr. Opin. Plant Biol. 2005;8:494–500. doi:10.1016/j.pbi.2005.07.014. [PubMed] [CrossRef] [Google Scholar]

31. Konstantinova N., Korbei B., Luschnig C. Auxin and root gravitropism: Addressing basic cellular processes by exploiting a defined growth response. Int. J. Mol. Sci. 2021;22:2749. doi:10.3390/ijms22052749. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

32. Adamowski M., Friml J. PIN-dependent auxin transport: Action, regulation, and evolution. Plant Cell. 2015;27:20–32. doi:10.1105/tpc.114.134874. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

33. Michniewicz M., Brewer P.B., Friml J.Í. Polar auxin transport and asymmetric auxin distribution. Arab. Book. 2007;5:e0108. doi:10.1199/tab.0108. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

34. Blilou I., Xu J., Wildwater M., Willemsen V., Paponov I., Friml J., Heidstra R., Aida M., Palme K., Scheres B. The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature. 2005;433:39–44. doi:10.1038/nature03184. [PubMed] [CrossRef] [Google Scholar]

35. Samakovli D., Roka L., Dimopoulou A., Plitsi P.K., Žukauskaitė A., Georgopoulou P., Novák O., Milioni D., Hatzopoulos P. HSP90 affects root growth in Arabidopsis by regulating the polar distribution of PIN1. New Phytol. 2021;231:1814–1831. doi:10.1111/nph.17528. [PubMed] [CrossRef] [Google Scholar]

36. Wang H.Z., Yang K.Z., Zou J.J., Zhu L.L., Xie Z.D., Morita M.T., Tasaka M., Friml J., Grotewold E., Beeckman T., et al. Transcriptional regulation of PIN genes by FOUR LIPS and MYB88 during Arabidopsis root gravitropism. Nat. Commun. 2015;6:8822. doi:10.1038/ncomms9822. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

37. Rigó G., Ayaydin F., Tietz O., Zsigmond L., Kovács H., Páy A., Salchert K., Darula Z., Medzihradszky K.F., Szabados L., et al. Inactivation of plasma membrane–localized CDPK-RELATED KINASE5 decelerates PIN2 exocytosis and root gravitropic response in Arabidopsis. Plant Cell. 2013;25:1592–1608. doi:10.1105/tpc.113.110452. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

38. Cséplő Á., Zsigmond L., Andrási N., Baba A.I., Labhane N.M., Pető A., Kolbert Z., Kovács H.E., Steinbach G., Szabados L., et al. The AtCRK5 protein kinase is required to maintain the ROS NO balance affecting the PIN2-mediated root gravitropic response in Arabidopsis. Int. J. Mol. Sci. 2021;22:5979. doi:10.3390/ijms22115979. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

39. Kleine-Vehn J., Friml J. Polar Targeting and endocytic recycling in auxin-dependent plant development. Annu. Rev. Cell Dev. Biol. 2008;24:447–473. doi:10.1146/annurev.cellbio.24.110707.175254. [PubMed] [CrossRef] [Google Scholar]

40. Baster P., Robert S., Kleine-Vehn J., Vanneste S., Kania U., Grunewald W., De Rybel B., Beeckman T., Friml J. SCF(TIR1/AFB)-auxin signalling regulates PIN vacuolar trafficking and auxin fluxes during root gravitropism. EMBO J. 2013;32:260–274. doi:10.1038/emboj.2012.310. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

41. Gibson C.L., Isley J.W., Falbel T.G., Mattox C.T., Lewis D.R., Metcalf K.E., Muday G.K. A conditional mutation in SCD1 reveals linkage between PIN protein trafficking, auxin transport, gravitropism, and lateral root initiation. Front. Plant Sci. 2020;11:910. doi:10.3389/fpls.2020.00910. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

42. Kleine-Vehn J., Ding Z., Jones A.R., Tasaka M., Morita M.T., Friml J. Gravity-induced PIN transcytosis for polarization of auxin fluxes in gravity-sensing root cells. Proc. Natl. Acad. Sci. USA. 2010;107:22344–22349. doi:10.1073/pnas.1013145107. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

43. Barbosa I.C.R., Schwechheimer C. Dynamic control of auxin transport-dependent growth by AGCVIII protein kinases. Curr. Opin. Plant Biol. 2014;22:108–115. doi:10.1016/j.pbi.2014.09.010. [PubMed] [CrossRef] [Google Scholar]

44. Barbosa I.C.R., Hammes U.Z., Schwechheimer C. Activation and polarity control of PINFORMED auxin transporters by phosphorylation. Trends Plant Sci. 2018;23:523–538. doi:10.1016/j.tplants.2018.03.009. [PubMed] [CrossRef] [Google Scholar]

45. Baba A.I., Rigó G., Ayaydin F., Rehman A.U., Andrási N., Zsigmond L., Valkai I., Urbancsok J., Vass I., Pasternak T., et al. Functional Analysis of the Arabidopsis thaliana CDPK-Related Kinase Family: AtCRK1 Regulates Responses to Continuous Light. Int. J. Mol. Sci. 2018;19:1282. doi:10.3390/ijms19051282. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

46. Baba A.I., Andrási N., Valkai I., Gorcsa T., Koczka L., Darula Z., Medzihradszky K.F., Szabados L., Fehér A., Rigó G., et al. AtCRK5 protein kinase exhibits a regulatory role in hypocotyl hook development during skotomorphogenesis. Int. J. Mol. Sci. 2019;20:3432. doi:10.3390/ijms20143432. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

47. Baba A.I., Rigó G., Andrási N., Tietz O., Palme K., Szabados L., Cséplő Á. Striving Towards Abiotic Stresses: Role of the Plant CDPK Superfamily Members. In: Palocz-Andresen M., Szalay D., Gosztom A., Sípos L., Taligás T., editors. International Climate Protection. Springer International Publishing; Cham, Switzerland: 2019. pp. 99–105. [CrossRef] [Google Scholar]

48. Baba A.I., Valkai I., Labhane N., Koczka L., Andrási N., Klement E., Darula Z., Medzihradszky K., Szabados L., Fehér A., et al. CRK5 protein kinase contributes to the progression of embryogenesis of Arabidopsis thaliana. Int. J. Mol. Sci. 2019;20:6120. doi:10.3390/ijms20246120. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

49. Grones P., Abas M., Hajný J., Jones A., Waidmann S., Kleine-Vehn J., Friml J. (2018). PID/WAG-mediated phosphorylation of the Arabidopsis PIN3 auxin transporter mediates polarity switches during gravitropism. Sci. Rep. 2018;8:10279. doi:10.1038/s41598-018-28188-1. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

50. Nakamura M., Nishimura T., Morita M.T. Bridging the gap between amyloplasts and directional auxin transport in plant gravitropism. Curr. Opin. Plant Biol. 2019;52:54–60. doi:10.1016/j.pbi.2019.07.005. [PubMed] [CrossRef] [Google Scholar]

51. Sukumar P., Edwards K.S., Rahman A., Delong A., Muday G.K. PINOID kinase regulates root gravitropism through modulation of PIN2-dependent basipetal auxin transport in Arabidopsis. Plant Physiol. 2009;150:722–735. doi:10.1104/pp.108.131607. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

52. Hu X., Neill S.J., Tang Z., Cai W. Nitric oxide mediates gravitropic bending in soybean roots. Plant Physiol. 2005;137:663–670. doi:10.1104/pp.104.054494. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

53. Joo J.H., Bae Y.S., Lee J.S. Role of auxin-induced reactive oxygen species in root gravitropism. Plant Physiol. 2001;126:1055–1060. doi:10.1104/pp.126.3.1055. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

54. París R., Vazquez M.M., Graziano M., Terrile M.C., Miller N.D., Spalding E.P., Otegui M.S., Casalongué C.A. Distribution of endogenous NO regulates early gravitropic response and PIN2 localization in Arabidopsis roots. Front. Plant Sci. 2018;9:495. doi:10.3389/fpls.2018.00495. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

55. Zwiewka M., Bielach A., Tamizhselvan P., Madhavan S., Ryad E.E., Tan S., Hrtyan M., Dobrev P., Vankovï R., Friml J., et al. Root adaptation to H2O2-induced oxidative stress by ARF-GEF BEN1- and cytoskeleton-mediated PIN2 trafficking. Plant Cell Physiol. 2019;60:255–273. doi:10.1093/pcp/pcz001. [PubMed] [CrossRef] [Google Scholar]

56. Gadalla D.S., Braun M., Böhmer M. Gravitational Biology I. SpringerBriefs in Space Life Sciences. Springer; Cham, Switzerland: 2018. Gravitropism in Higher Plants: Cellular Aspects. [CrossRef] [Google Scholar]

57. Hensel W. Gravi- and Phototropism of higher plants. In: Behnke H.-D., Esser K., Kubitzki K., Runge M., Ziegler H., editors. Progress in Botany. Springer; Berlin/Heidelberg, Germany: 1986. pp. 205–214. [CrossRef] [Google Scholar]

58. Wendt M., Kuo-Huang L.-L., Sievers A. Gravitropic bending of cress roots without contact between amyloplasts and complexes of endoplasmic reticulum. Planta. 1987;172:321–329. doi:10.1007/BF00398660. [PubMed] [CrossRef] [Google Scholar]

59. White R.G., Sack F.D. Actin microfilaments in presumptive statocytes of root caps and coleoptiles. Am. J. Bot. 1990;77:17–26. doi:10.1002/j.1537-2197.1990.tb13523.x. [PubMed] [CrossRef] [Google Scholar]

60. Baluska F., Hasenstein K.H. Root cytoskeleton: Its role in perception of and response to gravity. Planta. 1997;203:S69–S78. doi:10.1007/PL00008117. [PubMed] [CrossRef] [Google Scholar]

61. Blancaflor E.B., Hasenstein K.H. The Organization of the actin cytoskeleton in vertical and graviresponding primary roots of maize. Plant Physiol. 1997;113:1447–1455. doi:10.1104/pp.113.4.1447. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

62. Collings D.A., Zsuppan G., Allen N.S., Blancaflor E.B. Demonstration of prominent actin filaments in the root columella. Planta. 2001;212:392–403. doi:10.1007/s004250000406. [PubMed] [CrossRef] [Google Scholar]

63. Friedman H., Meir S., Halevy A.H., Philosoph-Hadas S. Inhibition of the gravitropic bending response of flowering shoots by salicylic acid. Plant Sci. 2003;165:905–911. doi:10.1016/S0168-9452(03)00295-4. [PubMed] [CrossRef] [Google Scholar]

64. Livanos P., Galatis B., Apostolakos P. The interplay between ROS and tubulin cytoskeleton in plants. Plant Signal. Behav. 2014;9:e28069. doi:10.4161/psb.28069. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

65. Blancaflor E.B. Regulation of plant gravity sensing and signaling by the actin cytoskeleton. Am. J. Bot. 2013;100:143–152. doi:10.3732/ajb.1200283. [PubMed] [CrossRef] [Google Scholar]

66. Nakamura M., Toyota M., Tasaka M., Morita M.T. An Arabidopsis E3 ligase, SHOOT GRAVITROPISM9, modulates the interaction between statoliths and F-actin in gravity sensing. Plant Cell. 2011;23:1830–1848. doi:10.1105/tpc.110.079442. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

67. Sakai T., Mochizuki S., Haga K., Uehara Y., Suzuki A., Harada A., Wada T., Ishiguro S., Okada K. The WAVY GROWTH 3 E3 ligase family controls the gravitropic response in Arabidopsis roots: WAV3 family role in root gravitropism. Plant J. 2012;70:303–314. doi:10.1111/j.1365-313X.2011.04870.x. [PubMed] [CrossRef] [Google Scholar]

68. Taniguchi M., Furutani M., Nishimura T., Nakamura M., Fush*ta T., Iijima K., Baba K., Tanaka H., Toyota M., Tasaka M., et al. The Arabidopsis LAZY1 family plays a key role in gravity signaling within statocytes and in branch angle control of roots and shoots. Plant Cell. 2017;29:1984–1999. doi:10.1105/tpc.16.00575. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

69. Furutani M., Morita M.T. LAZY1-LIKE-mediated gravity signaling pathway in root gravitropic set-point angle control. Plant Physiol. 2021;187:1087–1095. doi:10.1093/plphys/kiab219. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

70. Mullen J.L., Hangarter R.P. Genetic analysis of the gravitropic set-point angle in lateral roots of Arabidopsis. Adv. Space Res. 2003;31:2229–2236. doi:10.1016/S0273-1177(03)00249-7. [PubMed] [CrossRef] [Google Scholar]

71. Roychoudhry S., Del Bianco M., Kieffer M., Kepinski S. Auxin controls gravitropic setpoint angle in higher plant lateral branches. Curr. Biol. 2013;23:1497–1504. doi:10.1016/j.cub.2013.06.034. [PubMed] [CrossRef] [Google Scholar]

72. Roychoudhry S., Kepinski S. Shoot and root branch growth angle control-the wonderfulness of lateralness. Curr. Opin. Plant Biol. 2015;23:124–131. doi:10.1016/j.pbi.2014.12.004. [PubMed] [CrossRef] [Google Scholar]

73. Rosquete M.R., von Wangenheim D., Marhavý P., Barbez E., Stelzer E.H., Benková E., Maizel A., Kleine-Vehn J. An auxin transport mechanism restricts positive orthogravitropism in lateral roots. Curr. Biol. 2013;23:817–822. doi:10.1016/j.cub.2013.03.064. [PubMed] [CrossRef] [Google Scholar]

74. Furutani M., Hirano Y., Nishimura T., Nakamura M., Taniguchi M., Suzuki K., Oshida R., Kondo C., Sun S., Kato K., et al. Polar recruitment of RLD by LAZY1-like protein during gravity signaling in root branch angle control. Nat. Commun. 2020;11:76. doi:10.1038/s41467-019-13729-7. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

75. Harrison B.R., Masson P.H. ARL2, ARG1 and PIN3 define a gravity signal transduction pathway in root statocytes: ARL2 and ARG1 modulate gravity signal transduction. Plant J. 2007;53:380–392. doi:10.1111/j.1365-313X.2007.03351.x. [PubMed] [CrossRef] [Google Scholar]

76. Baldwin K.L., Strohm A.K., Masson P.H. Gravity sensing and signal transduction in vascular plant primary roots. Am. J. Bot. 2013;100:126–142. doi:10.3732/ajb.1200318. [PubMed] [CrossRef] [Google Scholar]

77. Sedbrook J., Boonsirichai K., Chen R., Hilson P., Pearlman R., Rosen E., Rutherford R., Batiza A., Carroll K., Schulz T., et al. Molecular genetics of root gravitropism and waving in Arabidopsis thaliana. Gravit Space Biol Bull. 1998;11:71–78. [PubMed] [Google Scholar]

78. Porterfield D.M., Neichitailo G.S., Mashinski A.L., Musgrave M.E. Spaceflight hardware for conducting plant growth experiments in space: The early years 1960–2000. Adv. Space Res. 2003;31:183–193. doi:10.1016/S0273-1177(02)00752-4. [PubMed] [CrossRef] [Google Scholar]

79. Harvey B., Zakutnyaya O. Russian Space Probes: Scientific Discoveries and Future Missions. Springer; New York, NY, USA: 2011. pp. 301–374. Springer-Praxis books in space exploration. [Google Scholar]

80. Vandenbrink J.P., Kiss J.Z. Space, the Final Frontier: A critical review of recent experiments performed in microgravity. Plant Sci. 2016;243:115–119. doi:10.1016/j.plantsci.2015.11.004. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

81. Sathasivam M., Hosamani R., Swamy B.K., Kumaran G.S. Plant responses to real and simulated microgravity. Life Sci. Space Res. 2021;28:74–86. doi:10.1016/j.lssr.2020.10.001. [PubMed] [CrossRef] [Google Scholar]

82. Wolff S., Coelho L., Karoliussen I., Jost A.I. Effects of the extraterrestrial environment on plants: Recommendations for future space experiments for the MELiSSA higher plant compartment. Life. 2014;4:189–204. doi:10.3390/life4020189. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

83. Kiss J.Z., Aanes G., Schiefloe M., Coelho L.H.F., Millar K.D.L., Edelmann R.E. Changes in operational procedures to improve spaceflight experiments in plant biology in the European modular cultivation system. Adv. Space Res. 2014;53:818–827. doi:10.1016/j.asr.2013.12.024. [CrossRef] [Google Scholar]

84. Braun M., Böhmer M., Häderc D.P., Hemmersbach R., Palme K. Gravitational Biology I: Gravity Sensing and Graviorientation in Microorganisms and Plants. 1st ed. Springer; Berlin/Heidelberg, Germany: New York, NY, USA: 2018. [Google Scholar]

85. Vandenbrink J.P., Kiss J.Z., Herranz R., Medina F.J. Light and gravity signals synergize in modulating plant development. Front. Plant Sci. 2014;5:563. doi:10.3389/fpls.2014.00563. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

86. Sachs J. Über orthotrope und plagiotrope Pflanzenteile. Arb. Bot. Inst. Wurzburg. 1882;2:226–284. [Google Scholar]

87. Kamal K.Y., Herranz R., van Loon J.J.W.A., Christianen P.C.M., Medina F.J. Evaluation of simulated microgravity environments induced by diamagnetic levitation of plant cell suspension cultures. Microgravity Sci. Technol. 2016;28:309–317. doi:10.1007/s12217-015-9472-7. [CrossRef] [Google Scholar]

88. Hasenstein K.H., van Loon J.J.W.A. Clinostats and other rotating systems—design, function, and limitations. In: Beysens D.A., van Loon J.J.W.A., editors. Generation and Applications of Extra-Terrestrial Environments on Earth. River Publishers; Aalborg, Denmark: 2015. pp. 147–156. [Google Scholar]

89. Hemmersbach R., von der Wiesche M., Seibt D. Ground-based experimental platforms in gravitational biology and human physiology. Signal Transduct. 2006;6:381–387. doi:10.1002/sita.200600105. [CrossRef] [Google Scholar]

90. Hoson T., Kamisaka S., Masuda Y., Yamash*ta M., Buchen B. Evaluation of the three-dimensional clinostat as a simulator of weightlessness. Planta. 1997;203:S187–S197. doi:10.1007/PL00008108. [PubMed] [CrossRef] [Google Scholar]

91. Kraft T.F.B., van Loon J.J.W.A., Kiss J.Z. Plastid position in Arabidopsis columella cells is similar in microgravity and on a Random-Positioning Machine. Planta. 2000;211:415–422. doi:10.1007/s004250000302. [PubMed] [CrossRef] [Google Scholar]

92. Herranz R., Anken R., Boonstra J., Braun M., Christianen P.C.M., de Geest M., Hauslage J., Hilbig R., Hill R.J.A., Lebert M., et al. Ground-based facilities for simulation of microgravity: Organism-specific recommendations for their use, and recommended terminology. Astrobiology. 2013;13:1–17. doi:10.1089/ast.2012.0876. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

93. Huang B., Li D.G., Huang Y. Effects of spaceflight and simulated microgravity on microbial growth and secondary metabolism. Military Med Res. 2018;5:18. doi:10.1186/s40779-018-0162-9. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

94. Dedolph R.R., Dipert M.H. The physical basis of gravity stimulus nullification by clinostat rotation. Plant Physiol. 1971;47:756–764. doi:10.1104/pp.47.6.756. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

95. John S.P., Hasenstein K.H. Effects of mechanostimulation on gravitropism and signal persistence in Flax roots. Plant Signal. Behav. 2011;6:1365–1370. doi:10.4161/psb.6.9.16601. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

96. Böhmer M., Schleiff E. Microgravity research in plants A range of platforms and options allow research on plants in zero or low gravity that can yield important insights into plant physiology. EMBO Rep. 2019;20:e48541. doi:10.15252/embr.201948541. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

97. Pletser V., Russomano T. Preparation of Space Experiments. IntechOpen; London, UK: 2020. Research in Microgravity in Physical and Life Sciences: An Introduction to Means and Methods. [CrossRef] [Google Scholar]

98. Limbach C., Hauslage J., Schäfer C., Braun M. How to activate a plant gravireceptor. Early mechanisms of gravity sensing studied in Characean rhizoids during parabolic flights. Plant Physiol. 2005;139:1030–1040. doi:10.1104/pp.105.068106. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

99. Halstead T.W., Dutcher F.R. Plants in space. Annu. Rev. Plant. Physiol. 1987;38:317–345. doi:10.1146/annurev.pp.38.060187.001533. [PubMed] [CrossRef] [Google Scholar]

100. Kiss J.Z. Conducting plant experiments in space. In: Blancaflor E.B., editor. Plant Gravitropism. Volume 1309. Springer; New York, NY, USA: 2015. pp. 255–283. Methods in Molecular Biology. [PubMed] [CrossRef] [Google Scholar]

101. Carillo P., Morrone B., Fusco G.M., De Pascale S., Rouphael Y. Challenges for a sustainable food production system on board of the International Space Station: A technical review. Agronomy. 2020;10:687. doi:10.3390/agronomy10050687. [CrossRef] [Google Scholar]

102. Zabel P., Bamsey M., Schubert D., Tajmar M. Review and analysis of over 40 years of space plant growth systems. Life Sci. Space Res. 2016;10:1–16. doi:10.1016/j.lssr.2016.06.004. [PubMed] [CrossRef] [Google Scholar]

103. Khodadad C.L.M., Hummerick M.E., Spencer L.E., Dixit A.R., Richards J.T., Romeyn M.W., Smith T.M., Wheeler R.M., Massa G.D. Microbiological and nutritional analysis of lettuce crops grown on the International Space Station. Front. Plant Sci. 2020;11:199. doi:10.3389/fpls.2020.00199. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

104. Paul A.L., Popp M.P., Gurley W.B., Guy C., Norwood K.L., Ferl R.J. Arabidopsis gene expression patterns are altered during spaceflight. Adv. Space Res. 2005;36:1175–1181. doi:10.1016/j.asr.2005.03.066. [CrossRef] [Google Scholar]

105. Paul A.L., Zupanska A.K., Ostrow D.T., Zhang Y., Sun Y., Li J.-L., Shanker S., Farmerie W.G., Amalfitano C.E., Ferl R.J. Spaceflight transcriptomes: Unique responses to a novel environment. Astrobiology. 2012;12:40–56. doi:10.1089/ast.2011.0696. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

106. Paul A.L., Zupanska A.K., Schultz E.R., Ferl R.J. Organ-specific remodeling of the Arabidopsis transcriptome in response to spaceflight. BMC Plant Biol. 2013;13:112. doi:10.1186/1471-2229-13-112. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

107. Kwon T., Sparks J.A., Nakashima J., Allen S.N., Tang Y., Blancaflor E.B. Transcriptional response of Arabidopsis seedlings during spaceflight reveals peroxidase and cell wall remodeling genes associated with root hair development. Am. J. Bot. 2015;102:21–35. doi:10.3732/ajb.1400458. [PubMed] [CrossRef] [Google Scholar]

108. Kruse C.P.S., Meyers A.D., Basu P., Hutchinson S., Luesse D.R., Wyatt S.E. Spaceflight induces novel regulatory responses in Arabidopsis seedling as revealed by combined proteomic and transcriptomic analyses. BMC Plant Bio. 2020;20:237. doi:10.1186/s12870-020-02392-6. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

109. Zeng D., Cui J., Yin Y., Xiong Y., Liu M., Guan S., Cheng D., Sun Y., Lu W. Metabolomics analysis in different development stages on SP0 generation of rice seeds after spaceflight. Front. Plant Sci. 2021;12:700267. doi:10.3389/fpls.2021.700267. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

110. Paul A.L., Levine H.G., McLamb W., Norwood K.L., Reed D., Stutte G.W., William Wells H., Ferl R.J. Plant molecular biology in the space station era: Utilization of KSC fixation tubes with RNAlater. Acta Astronaut. 2005;56:623–628. doi:10.1016/j.actaastro.2004.10.001. [PubMed] [CrossRef] [Google Scholar]

111. Ferl R.J., Zupanska A., Spinale A., Reed D., Manning-Roach S., Guerra G., Cox D.R., Paul A.-L. The performance of KSC fixation tubes with RNALater for orbital experiments: A case study in ISS operations for molecular biology. Adv. Space Res. 2011;4:199–206. doi:10.1016/j.asr.2011.03.002. [CrossRef] [Google Scholar]

112. Colla G., Rouphael Y., Cardarelli M., Mazzucato A., Olimpieri I. Growth, yield and reproduction of Dwarf tomato grown under simulated microgravity conditions. Plant Biosyst. Int. J. Deal. All Asp. Plant Biol. 2007;141:75–81. doi:10.1080/11263500601153735. [CrossRef] [Google Scholar]

113. Zheng H.Q., Han F., Le J. Higher plants in space: Microgravity perception, response, and adaptation. Microgravity Sci. Technol. 2015;27:377–386. doi:10.1007/s12217-015-9428-y. [CrossRef] [Google Scholar]

114. Merkys A.J., Laurinavičius R.S., Kenstavičien P.F., Nečitailo G.S. formation and growth of callus tissue of Arabidopsis under changed gravity. Adv. Space Res. 1989;9:37–40. doi:10.1016/0273-1177(89)90051-3. [PubMed] [CrossRef] [Google Scholar]

115. Levine H.G., Krikorian A.D. Shoot growth in aseptically cultivated Daylily and Haplopappus plantlets after a 5-day spaceflight. Physiol Plant. 1992;86:349–359. doi:10.1111/j.1399-3054.1992.tb01330.x. [PubMed] [CrossRef] [Google Scholar]

116. Salmi M.L., Roux S.J. Gene expression changes induced by space flight in single-cells of the fern Ceratopteris richardii. Planta. 2008;229:151–159. doi:10.1007/s00425-008-0817-y. [PubMed] [CrossRef] [Google Scholar]

117. Hauslage J., Görög M., Krause L., Schüler O., Schäfer M., Witten A., Kesseler L., Böhmer M., Hemmersbach R. ARABIDOMICS—A new experimental platform for molecular analyses of plants in drop towers, on parabolic flights, and sounding rockets. Rev. Sci. Instrum. 2020;91:034504. doi:10.1063/1.5120573. [PubMed] [CrossRef] [Google Scholar]

118. Watanabe C., Fujii N., Yanai K., Hotta T., Kim D.-H., Kamada M., Sasagawa-Saito Y., Nishimura T., Koshiba T., Miyazawa Y., et al. Gravistimulation changes the accumulation pattern of the CsPIN1 auxin efflux facilitator in the endodermis of the transition zone in cucumber seedlings. Plant Physiol. 2012;158:239–251. doi:10.1104/pp.111.188615. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

119. Yamazaki C., Fujii N., Miyazawa Y., Kamada M., Kasahara H., Osada I., Shimazu T., Fusejima Y., Higashibata A., Yamazaki T., et al. The gravity-induced re-localization of auxin efflux carrier CsPIN1 in cucumber seedlings: Spaceflight experiments for immunohistochemical microscopy. npj Microgravity. 2016;2:16030. doi:10.1038/npjmgrav.2016.30. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

120. Oka M., Kamada M., Inoue R., Miyamoto K., Uheda E., Yamazaki C., Shimazu T., Sano H., Kasahara H., Suzuki T., et al. Altered localisation of ZmPIN1a proteins in plasma membranes responsible for enhanced-polar auxin transport in etiolated maize seedlings under microgravity conditions in space. Funct. Plant Biol. FPB. 2020;47:1062–1072. doi:10.1071/FP20133. [PubMed] [CrossRef] [Google Scholar]

121. Matía I., González-Camacho F., Herranz R., Kiss J.Z., Gasset G., van Loon J.J.W.A., Marco R., Javier Medina F. Plant cell proliferation and growth are altered by microgravity conditions in spaceflight. J. Plant Physiol. 2010;167:184–193. doi:10.1016/j.jplph.2009.08.012. [PubMed] [CrossRef] [Google Scholar]

122. Johnson C.M., Subramanian A., Edelmann R.E., Kiss J.Z. Morphometric analyses of petioles of seedlings grown in a spaceflight experiment. J Plant Res. 2015;128:1007–1016. doi:10.1007/s10265-015-0749-0. [PubMed] [CrossRef] [Google Scholar]

123. Correll M.J., Pyle T.P., Millar K.D.L., Sun Y., Yao J., Edelmann R.E., Kiss J.Z. Transcriptome analyses of Arabidopsis thaliana seedlings grown in space: Implications for gravity-responsive genes. Planta. 2013;238:519–533. doi:10.1007/s00425-013-1909-x. [PubMed] [CrossRef] [Google Scholar]

124. Paul A.L., Sng N.J., Zupanska A.K., Krishnamurthy A., Schultz E.R., Ferl R.J. Genetic dissection of the Arabidopsis spaceflight transcriptome: Are some responses dispensable for the physiological adaptation of plants to spaceflight? PLoS ONE. 2017;12:e0180186. doi:10.1371/journal.pone.0180186. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

125. Choi W.G., Barker R.J., Kim S.-H., Swanson S.J., Gilroy S. Variation in the transcriptome of different ecotypes of Arabidopsis thaliana reveals signatures of oxidative stress in plant responses to spaceflight. Am. J. Bot. 2019;106:123–136. doi:10.1002/ajb2.1223. [PubMed] [CrossRef] [Google Scholar]

126. Paul A.L., Amalfitano C.E., Ferl R.J. Plant Growth strategies are remodeled by spaceflight. BMC Plant Biol. 2012;12:232. doi:10.1186/1471-2229-12-232. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

127. Kozeko L.Y., Buy D.D., Pirko Y.V., Blume Y.B., Kordyum E.L. Clinorotation affects induction of the heat shock response in Arabidopsis thaliana seedlings. Gravit. Space Res. 2018;6:2–9. doi:10.2478/gsr-2018-0001. [CrossRef] [Google Scholar]

128. Aubry-Hivet D., Nziengui H., Rapp K., Oliveira O., Paponov I.A., Li Y., Hauslage J., Vagt N., Braun M., Ditengou F.A., et al. Analysis of gene expression during parabolic flights reveals distinct early gravity responses in Arabidopsis roots. Plant Biol. 2014;16:129–141. doi:10.1111/plb.12130. [PubMed] [CrossRef] [Google Scholar]

129. Beisel N.S., Noble J., Barbazuk W.B., Paul A.L., Ferl R.J. Spaceflight-induced alternative splicing during seedling development in Arabidopsis thaliana. npj Microgravity. 2019;5:9. doi:10.1038/s41526-019-0070-7. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

130. Ferl R.J., Paul A.L. The effect of spaceflight on the gravity-sensing auxin gradient of roots: GFP reporter gene microscopy on orbit. npj Microgravity. 2016;2:15023. doi:10.1038/npjmgrav.2015.23. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

131. Babbick M., Dijkstra C., Larkin O.J., Anthony P., Davey M.R., Power J.B., Lowe K.C., Cogoli-Greuterd M., Hamp R. Expression of Transcription Factors after Short-Term Exposure of Arabidopsis thaliana Cell Cultures to Hypergravity and Simulated Microgravity (2-D/3-D Clinorotation, Magnetic Levitation) Adv. Space Res. 2007;39:1182–1189. doi:10.1016/j.asr.2007.01.001. [CrossRef] [Google Scholar]

132. Sheppard J., Land E.S., Toennisson T.A., Doherty C.J., Perera I.Y. 2021. Uncovering transcriptional responses to fractional gravity in Arabidopsis roots. Life. 2021;11:1010. doi:10.3390/life11101010. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

133. Manzano A., Herranz R., den Toom L.A., te Slaa S., Borst G., Visser M., Medina J., van Loon J.J. Novel, Moon and Mars, partial gravity simulation paradigms and their effects on the balance between cell growth and cell proliferation during early plant development. npj Microgravity. 2018;4:9. doi:10.1038/s41526-018-0041-4. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

134. Kamal K.Y., Herranz R., van Loon J.J., Medina F.J. Cell cycle acceleration and changes in essential nuclear functions induced by simulated microgravity in a synchronized Arabidopsis cell culture. Plant Cell Environ. 2019;42:480–494. doi:10.1111/pce.13422. [PubMed] [CrossRef] [Google Scholar]

135. Jiao S., Hilaire E., Paulsen A.Q., Guikema J.A. Brassica rapa plants adapted to microgravity with reduced photosystem I and its photochemical activity. Physiol. Plant. 2004;122:281–290. doi:10.1111/j.1399-3054.2004.00400.x. [PubMed] [CrossRef] [Google Scholar]

136. Jagtap S.S., Awhad R.B., Santosh B., Vidyasagar P.B. Effects of Clinorotation on Growth and Chlorophyll Content of Rice Seeds. Microgravity Sci. Technol. 2011;23:41–48. doi:10.1007/s12217-010-9222-9. [CrossRef] [Google Scholar]

137. Kitaya Y., Kawai M., Tsuruyama J., Takahashi H., Tani A., Goto E., Saito T., Kiyota M. The effect of gravity on surface temperature and net photosynthetic rate of plant leaves. Adv. Space Res. 2001;28:659–664. doi:10.1016/S0273-1177(01)00375-1. [PubMed] [CrossRef] [Google Scholar]

138. Faraoni P., Sereni E., Gnerucci A., Cialdai F., Monici M., Ranaldi F. Glyoxylate cycle activity in Pinus pinea seeds during germination in altered gravity conditions. Plant Physiol. Biochem. 2019;139:389–394. doi:10.1016/j.plaphy.2019.03.042. [PubMed] [CrossRef] [Google Scholar]

139. Ranaldi F., Vanni P., Giachetti E. Enzyme catalysis in microgravity: Steady-state kinetic analysis of the isocitrate lyase reaction. Biophys. Chem. 2003;103:169–177. doi:10.1016/S0301-4622(02)00254-5. [PubMed] [CrossRef] [Google Scholar]

140. Chandler J.O., Haas F.B., Khan S., Bowden L., Ignatz M., Enfissi E.M., Gawthrop F., Griffiths A., Fraser P.D., Rensing S.A., et al. Rocket science: The effect of spaceflight on germination physiology, ageing, and transcriptome of Eruca sativa seeds. Life. 2020;10:49. doi:10.3390/life10040049. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

141. Zeng D., Cui J., Yin Y., Zhang M., Shan S., yao Liu M., Cheng D., Lu W., Sun Y. Proteomic analysis in different development stages on SP0 generation of rice seeds after space flight. Life Sci. Space Res. 2020;26:34–45. doi:10.1016/j.lssr.2020.02.001. [PubMed] [CrossRef] [Google Scholar]

142. Villacampa A., Sora L., Herranz R., Medina F.J., Ciska M. Analysis of gravi-response and biological effects of vertical and horizontal clinorotation in Arabidopsis thaliana root tip. Plants. 2021;10:734. doi:10.3390/plants10040734. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

143. Villacampa A., Fañanás-Pueyo I., Medina F.J., Ciska M. Root growth direction in simulated microgravity is modulated by a light avoidance mechanism mediated by flavonols. Physiol. Plant. 2022;174:e13722. doi:10.1111/ppl.13722. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

144. Aronne G., Muthert L.W.F., Izzo L.G., Romano L.E., Iovane M., Capozzi F., Manzano A., Ciska M., Herranz R., Medina F.J., et al. A novel device to study altered gravity and light interactions in seedling tropisms. Life Sci. Space Res. 2022;32:8–16. doi:10.1016/j.lssr.2021.09.005. [PubMed] [CrossRef] [Google Scholar]

145. Oluwafemi F.A., Akpu S.U., Akomolafe C.B., Billyok B.J., Okhuelegbe E.O., Doherty K.B., Olubiyi R., Adeleke O., Oluwafemi L., Agboola O.A. Microgravity-simulation of plant growth and its implications to the Sustainable Development Goals. Int. J. Biomed. Health Sci. 2022;17 [Google Scholar]

146. Xu P., Chen H., Hu J., Pang X., Jin J., Cai W. Pectin methylesterase gene AtPMEPCRA contributes to physiological adaptation to simulated and spaceflight micro-gravity in Arabidopsis. iScience. 2022;25:104331. doi:10.1016/j.isci.2022.104331. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

147. Mohammadalikhani S., Ghanati F., Hajebrahimi Z., Sharifi M. Molecular and biochemical modifications of suspension-cultured tobacco cell walls after exposure to alternative gravity. Plant Physiol. Biochem. 2022;176:1–7. doi:10.1016/j.plaphy.2022.02.012. [PubMed] [CrossRef] [Google Scholar]

Plants in Microgravity: Molecular and Technological Perspectives (2024)

FAQs

How are plants affected by microgravity? ›

To sum up, plant life depends on gravity, and auxin transport, which is regulated by gravity, plays an important role. It is thought that in the weightlessness of space the absence of gravity to regulate auxin transport results in abnormal growth and development of plants.

How do plants respond to zero gravity? ›

In the absence of gravity, plants use other environmental factors, such as light, to orient and guide growth. A bank of light emitting diodes (LEDs) above the plants produces a spectrum of light suited for the plants' growth.

What happens when plants grow in space? ›

They observed that the seedlings still experienced rotational growth and circumnutation despite lack of gravity, showing these behaviors are instinctual. Other experiments have found that plants have the ability to exhibit gravitropism, even in low-gravity conditions.

Why is figuring out how to grow plants in space challenging? ›

One significant challenge for growing plants in microgravity is providing enough water to keep them healthy without drowning them in too much water. Plant Water Management demonstrated a hydroponic (water-based) method for providing water and air to plant roots.

How does microgravity affect gene expression in plants? ›

These observations indicate that the space environment (excluding µ g) enhanced the expression of these stress-related genes. However, this group of genes was specifically downregulated in µ g compared to 1 g suggesting that microgravity masks the induction of these genes in the space environment.

What type of effect does gravity have on plants? ›

Gravity affects the ecology and evolution of every living organism. In plants, the general response to gravity is well known: their roots respond positively, growing down, into the soil, and their stems respond negatively, growing upward, to reach the sunlight.

What is the result of plants grown during NASA experiments at zero gravity? ›

An early experiment, PESTO, found that microgravity alters leaf development, plant cells, and the chloroplasts used in photosynthesis, but did not harm the plants overall. In fact, wheat plants grew 10% taller compared to those on Earth. View of wheat plants grown on the space station for PESTO.

What mechanisms do plants respond to gravity? ›

The roots grown downward in the direction of gravity, which is positive gravitropism, and the shoot grows upward away from gravity, which is negative gravitropism. The reason plants know which way to grow in response to gravity is due to amyloplasts in the plants.

How did plants overcome gravity? ›

There is a hormone called Auxins in plant body which induces rapid cell division. Now, as we know if the plant shoot is straight up, gravity causes more Auxins concentration in the bottom, thus the tree grows straight up.

What happens to plants in the vacuum of space? ›

If you stuck a daisy out of the International Space Station and exposed it to the vacuum of space, it would perish immediately. The water in its cells would rush out and dissipate as vapor, leaving behind a freeze-dried flower.

What is the first vegetable to be grown in space? ›

In October 1995, the potato became the first vegetable to be grown in space. NASA and the University of Wisconsin, Madison, created the technology with the goal of feeding astronauts on long space voyages, and eventually, feeding future space colonies.

Can plants produce oxygen in space? ›

On the Space Station, carbon dioxide will be transformed by photosynthesis into oxygen and edible biomass such as proteins. Though a routine process on Earth, we must understand how it works in space before we can exploit it.

What was the first food eaten in space? ›

When the Soviet Union's Yuri Gagarin (pictured) became the first human in space, he took along and ate the first meal in space: two servings of pureed meat and one of chocolate sauce – all in the yummy form of paste he squeezed from tubes, just like toothpaste!

Which of the following is the biggest challenge of growing plants in space? ›

“In this project, we are building on longstanding efforts to grow plants on the International Space Station (ISS), and we'll be taking the next step to the Lunar surface. “The main challenge is the harsh conditions which include vacuum, extreme hot or cold temperatures, and damaging radiation.

What foods grow best in space? ›

Veg in Space! Learn about Space Gardening
  • Rice. ...
  • Soft white wheat. ...
  • Tomato. ...
  • Spinach. ...
  • Lettuce. ...
  • Beetroot. ...
  • Onion. ...
  • Spirulina. Not very appetising but in the worst-case scenario, space explorers would be able to survive on this green micro-alga.

How are plants sensitive to gravity? ›

The roots grown downward in the direction of gravity, which is positive gravitropism, and the shoot grows upward away from gravity, which is negative gravitropism. The reason plants know which way to grow in response to gravity is due to amyloplasts in the plants.

Do plants grow against gravity? ›

Well, It is a phenomenon that is called "Gravitropism". Gravitropism is either positive which means "with gravity" or negative gravitropism which means against gravity. It is said that plant and fungi both have negative gravitropism i.e. both of them grow upwards.

How does space radiation affect plants? ›

The research team hypothesizes that exposure to space radiation triggers genome oxidation and an increase in the activity of telomerase, a specialized enzyme responsible for maintaining telomeric DNA. The preliminary data suggests a strong connection between them.

How does gravity affect planets? ›

Gravity is what holds the planets in orbit around the sun and what keeps the moon in orbit around Earth. The gravitational pull of the moon pulls the seas towards it, causing the ocean tides. Gravity creates stars and planets by pulling together the material from which they are made.

References

Top Articles
Latest Posts
Article information

Author: Greg O'Connell

Last Updated:

Views: 5658

Rating: 4.1 / 5 (62 voted)

Reviews: 93% of readers found this page helpful

Author information

Name: Greg O'Connell

Birthday: 1992-01-10

Address: Suite 517 2436 Jefferey Pass, Shanitaside, UT 27519

Phone: +2614651609714

Job: Education Developer

Hobby: Cooking, Gambling, Pottery, Shooting, Baseball, Singing, Snowboarding

Introduction: My name is Greg O'Connell, I am a delightful, colorful, talented, kind, lively, modern, tender person who loves writing and wants to share my knowledge and understanding with you.